- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的两个焦点
,
,且椭圆过点
,
,且
是椭圆上位于第一象限的点,且
的面积
.

(1)求点
的坐标;
(2)过点
的直线
与椭圆
相交于点
,
,直线
,
与
轴相交于
,
两点,点
,则
是否为定值,如果是定值,求出这个定值,如果不是请说明理由.









(1)求点

(2)过点












已知椭圆
的两个焦点
,且椭圆过点
,且
是椭圆上位于第一象限的点,且
的面积
.

(1)求点
的坐标;
(2)过点
的直线
与椭圆
相交与点
,直线
与
轴相交与
两点,点
,则
是否为定值,如果是定值,求出这个定值,如果不是请说明理由.







(1)求点

(2)过点









在椭圆
中,
为椭圆上的一点,过坐标原点的直线交椭圆于
两点,其中
在第一象限,过
作
轴的垂线,垂足为
,连接
,
(1)若直线
与
的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;
(2)若
为
的延长线与椭圆的交点,求证:
.








(1)若直线


(2)若



已知椭圆
的两个焦点分别为
,
,长轴长为6.
(1)求椭圆
的标准方程;
(2)已知过点
且斜率为1的直线交椭圆
于
、
两点,试探究原点
是否在以线段
为直径的圆上.



(1)求椭圆

(2)已知过点






已知椭圆
的右焦点为
,上顶点为
,直线
与直线
垂直,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过点
作椭圆
的两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.







(1)求椭圆

(2)过点






在平面直角坐标系
中,已知点
,
,动点
不在
轴上,直线
、
的斜率之积
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)经过点
的两直线与动点
的轨迹分别相交于
、
两点。是否存在常数
,使得任意满足
的直线
恒过线段
的中点?请说明理由.








(Ⅰ)求动点

(Ⅱ)经过点








已知两点A(-
,0),B(
,0),动点P在y轴上的投影是Q,且
.
(1)求动点P的轨迹C的方程;
(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.



(1)求动点P的轨迹C的方程;
(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.
如图,已知
,
是椭圆
的左右焦点,
为椭圆
的上顶点,点
在椭圆
上,直线
与
轴的交点为
,
为坐标原点,且
,
.

(1)求椭圆
的方程;
(2)过点
作两条互相垂直的直线分别与椭圆
交于
,
两点(异于点
),证明:直线
过定点,并求该定点的坐标.














(1)求椭圆

(2)过点






在
中,
,
,其周长是
,
是
的中点,
在线段
上,满足
.
(1)求点
的轨迹
的方程;
(2)若
,
在
的延长线上,过点
的直线交轨迹
于
两点,直线
与轨迹
交于另一点
,若
,求
的值.









(1)求点


(2)若












已知椭圆
以
,
为焦点,且离心率
(1)求椭圆
的方程;
(2)过
点斜率为
的直线
与椭圆
有两个不同交点
、
,求
的范围;
(3)设椭圆
与
轴正半轴、
轴正半轴的交点分别为
、
,是否存在直线
,满足(2)中的条件且使得向量
与
垂直?如果存在,写出
的方程;如果不存在,请说明理由.




(1)求椭圆

(2)过







(3)设椭圆








