- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的焦距为
,离心率为
,其右焦点为
,过点
作直线交椭圆于另一点
.
(Ⅰ)若
,求
的面积;
(Ⅱ)若过点
的直线与椭圆
相交于两点
、
,设
为
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.






(Ⅰ)若


(Ⅱ)若过点










已知椭圆
的中心在坐标原点
,其焦点与双曲线
的焦点重合,且椭圆
的短轴的两个端点与其一个焦点构成正三角形.
(1)求椭圆
的方程;
(2)过双曲线
的右顶点
作直线
与椭圆
交于不同的两点
.设
,当
为定值时,求
的值;




(1)求椭圆

(2)过双曲线








已知点
与
的距离和它到直线
的距离的比是常数
.
求点M的轨迹C的方程;
设N是圆E:
上位于第四象限的一点,过N作圆E的切线
,与曲线C交于A,B两点
求证:
的周长为10.










如图所示,在平面直角坐标系xOy中,已知椭圆C1:
,椭圆C2:
,C2与C1的长轴长之比为
∶1,离心率相同.
(1)求椭圆C2的标准方程;
(2)设点
为椭圆C2上一点.
① 射线
与椭圆C1依次交于点
,求证:
为定值;
② 过点
作两条斜率分别为
的直线
,且直线
与椭圆C1均有且只有一个公共点,求证:
为定值.



(1)求椭圆C2的标准方程;
(2)设点

① 射线



② 过点





已知椭圆
:
与抛物线
有共同的焦点,且椭圆
的一个焦点和短轴的两个顶点的连线构成等边三角形.
(1)求椭圆
的标准方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.




(1)求椭圆

(2)已知过椭圆









(3)在(2)的条件下求

如图,椭圆
的右焦点为
,过点
的直线
与椭圆交于
,
两点,直线
与
轴相交于点
,点
在直线
上,且满足
轴.

(1)当直线
与
轴垂直时,求直线
的方程;
(2)证明:直线
经过线段
的中点.













(1)当直线



(2)证明:直线


已知椭圆
:
,与
轴不重合的直线
经过左焦点
,且与椭圆
相交于
,
两点,弦
的中点为
,直线
与椭圆
相交于
,
两点.
(Ⅰ)若直线
的斜率为1,求直线
的斜率;
(Ⅱ)是否存在直线
,使得
成立?若存在,求出直线
的方程;若不存在,请说明理由.














(Ⅰ)若直线


(Ⅱ)是否存在直线



如图,已知椭圆
的长轴长是短轴长的
倍,右焦点为
,点
分别是该椭圆的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
交椭圆于另一点
,记直线
,
的斜率分别为

(1)当直线
过点
时,求
的值;
(2)求
的最小值.













(1)当直线



(2)求
