- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- + 抛物线的焦半径公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线
(
)的焦点为
,准线为
,过焦点的直线分别交抛物线于
两点,分别过
作
的垂线,垂足为
.若
,且三角形
的面积为
,则
的值为( )












A.![]() | B.![]() | C.![]() | D.![]() |
已知点F是抛物线y2=2px(p>0)的焦点,点A(2,y1),B(
,y2)分别是抛物线上位于第一、四象限的点,若|AF|=10,则|y1﹣y2|=_____.

已知抛物线
的焦点为
,抛物线
上横坐标为3的点
到焦点
的距离为4.
(1)求抛物线
的方程;
(2)直线
经过焦点
且斜率为1,设直线
与抛物线
相交于
、
两点,求线段
的长.





(1)求抛物线

(2)直线






