- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,抛物线
的焦点为
,抛物线上一定点
.

(1)求抛物线
的方程及准线
的方程;
(2)过焦点
的直线(不经过点
)与抛物线交于
两点,与准线
交于点
,记
的斜率分别为
,
,
,问是否存在常数
,使得
成立?若存在
,求出
的值;若不存在,说明理由.




(1)求抛物线


(2)过焦点













已知抛物线x2=2py(p>0)的焦点F是椭圆
+
=1(a>b>0)的一个焦点,若P,Q是椭圆与抛物线的公共点,且直线PQ经过焦点F,则该椭圆的离心率为________.


已知抛物线人
的焦点为F,过点
的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点C,D设直线AB,CD的斜率分别为
,则
等于()




A.![]() | B.![]() | C.1 | D.2 |