- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
,
为其焦点,
为其准线,过
任作一条直线交抛物线于
两点,
分别为
在
上的射影,
为
的中点,给出下列命题:
①
;②
;③
;
④
与
的交点在
轴上;⑤
与
交于原点.
其中真命题是__________.(写出所有真命题的序号)










①



④





其中真命题是__________.(写出所有真命题的序号)
如图,O为坐标原点,点F为抛物线C1:
的焦点,且抛物线C1上点M处的切线与圆C2:
相切于点Q.



(Ⅰ)当直线MQ的方程为
时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求
的最小值.





(Ⅰ)当直线MQ的方程为

(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求
