- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求双曲线的离心率或离心率的取值范围
- 双曲线离心率大小与双曲线形状的关系
- 根据离心率求双曲线的标准方程
- 求共离心率的双曲线的标准方程
- 由双曲线的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
是抛物线
:
的焦点,点
为抛物线
的对称轴与其准线的交点,过
作抛物线
的切线,切点为
,若点
恰好在以
,
为焦点的双曲线上,则双曲线的离心率为( )











A.![]() | B.![]() | C.![]() | D.![]() |
P(x0,y0)(x0≠±a)是双曲线E:
(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为
.
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足
,求λ的值.


(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足







(1)求双曲线的离心率.
(2)过双曲线






如图,双曲线
的两顶点为
,
,虚轴两端点为
,
,两焦点为
,
. 若以
为直径的圆内切于菱形
,切点分别为
. 则

(Ⅰ)双曲线的离心率
;
(Ⅱ)菱形
的面积
与矩形
的面积
的比值
.











(Ⅰ)双曲线的离心率

(Ⅱ)菱形




