- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求双曲线的离心率或离心率的取值范围
- 双曲线离心率大小与双曲线形状的关系
- 根据离心率求双曲线的标准方程
- 求共离心率的双曲线的标准方程
- 由双曲线的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列四个命题
①四面体
中,
,
,则
②已知双曲线
的两条渐近线的夹角为
,则双曲线的离心率为2
③若正数
和
满足
,则
④向量
,若存在实数
,使得
,则
其中真命题的序号是______(写出所有真命题的序号).
①四面体




②已知双曲线


③若正数




④向量




其中真命题的序号是______(写出所有真命题的序号).
如图所示,

椭圆中心在坐标原点,
为左焦点,
分别为椭圆的右顶点和上顶点,当
时,其离心率为
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率
等于___________ .

椭圆中心在坐标原点,





下列说法正确的个数是( )
①设某大学的女生体重
与身高
具有线性相关关系,根据一组样本数据
,用最小二乘法建立的线性回归方程为
,则若该大学某女生身高增加
,则其体重约增加
;
②关于
的方程
的两根可分别作为椭圆和双曲线的离心率;
③过定圆
上一定点
作圆的动弦
,
为原点,若
,则动点
的轨迹为椭圆;
④已知
是椭圆
的左焦点,设动点
在椭圆上,若直线
的斜率大于
,则直线
(
为原点)的斜率的取值范围是
.
①设某大学的女生体重






②关于


③过定圆






④已知








A.1 | B.2 | C.3 | D.4 |