- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
,点A,B分别是椭圆E的左顶点和上顶点,直线AB与圆C:x2+y2=c2相离,其中c是椭圆的半焦距,P是直线AB上一动点,过点P作圆C的两条切线,切点分别为M,N,若存在点P使得△PMN是等腰直角三角形,则椭圆离心率平方e2的取值范围是_____.

在平面直角坐标系
中,已知椭圆
:
(
)的离心率
且椭圆
上的点到点
的距离的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上,是否存在点
,使得直线
:
与圆
:
相交于不同的两点
、
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.







(Ⅰ)求椭圆

(Ⅱ)在椭圆











已如椭圆E:
(
)的离心率为
,点
在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点
,且与E交于P,Q两点,试问:是否存在定点C,使得
?若存在,求C的坐标:若不存在,请说明理由




(1)求E的方程:
(2)斜率不为0的直线l经过点


以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()
A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点),点
在椭圆
上,且
,直线
与
轴
轴分别交于
两点.
①设直线
斜率分别为
,证明存在常数
使得
,并求出
的值;
②求
面积的最大值.






(1)求椭圆

(2)过原点的直线与椭圆











①设直线





②求

如图,
、
是离心率为
的椭圆
:
的左、右焦点,过
作
轴的垂线交椭圆
所得弦长为
,设
、
是椭圆
上的两个动点,线段
的中垂线与椭圆
交于
、
两点,线段
的中点
的横坐标为1.

(1)求椭圆
的方程;
(2)求
的取值范围.



















(1)求椭圆

(2)求
