- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中x、y的取值范围
- + 根据椭圆的有界性求范围或最值
- 点和椭圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆C:
+
=1(a>b>0)的长轴长、短轴长和焦距成等差数列,若点P为椭圆C上的任意一点,且P在第一象限,O为坐标原点,F(3,0)为椭圆C的右焦点,则
•
的取值范围为( )




A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知椭圆
的焦点和上项点分别为
,我们称
为椭圆
的“特征三角形”.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比. 若椭圆
,直线

已知椭圆
与椭圆
是相似椭圆,求
的值及椭圆
与椭圆
相似比;
求点
到椭圆
上点的最大距离;
如图,设直线
与椭圆
相交于
两点,与椭圆
交于
两点,求证:
.
























已知椭圆C:
的离心率为
,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.
(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.


(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.
椭圆
和椭圆
满足椭圆
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点
,且与椭圆
相似的椭圆方程;
(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆
和
交于A、B两点,P为线段AB上的一点,若
,
,
成等比数列,则点P的轨迹方程为
”.请用推广或类比的方法提出类似的一个真命题,不必证明.



(1)求经过点


(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求

(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆






已知椭圆C:
的离心率为
,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.
(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且AQ∥BM,求证:∠PFQ为定值.


(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且AQ∥BM,求证:∠PFQ为定值.