- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- + 椭圆的焦点、焦距
- 求椭圆的焦点、焦距
- 求共焦点的椭圆方程
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线M:
的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.



(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知椭圆
的一个焦点与抛物线
的焦点相同,A为椭圆C的右顶点,以A为圆心的圆与直线
相交于P,
两点,且
(Ⅰ)求椭圆C的标准方程和圆A的方程;

(Ⅱ)不过原点的直线
与椭圆C交于M、N两点,已知OM,直线
,ON的斜率
成等比数列,记以OM、ON为直径的圆的面积分别为S1、S2,试探究
的值是否为定值,若是,求出此值;若不是,说明理由.





(Ⅰ)求椭圆C的标准方程和圆A的方程;

(Ⅱ)不过原点的直线




如图,椭圆
的离心率为
,以椭圆
的上顶点
为圆心作圆
,圆
与椭圆
在第一象限交于点
,在第二象限交于点
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的最小值,并求出此时圆
的方程;
(Ⅲ)设点
是椭圆
上异于
,
的一点,且直线
,
分别与
轴交于点
,
,
的坐标原点,求证:
为定值.










(Ⅰ)求椭圆

(Ⅱ)求


(Ⅲ)设点










