已知椭圆的离心率为,右焦点为,直线l经过点F,且与椭圆交于AB两点,O为坐标原点.
(1)求椭圆的标准方程;
(2)当直线l绕点F转动时,试问:在x轴上是否存在定点M,使得为常数?若存在,求出定点M的坐标;若不存在,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
已知椭圆的离心率为,椭圆的四个顶点围成的四边形的面积为
(1)求椭圆的标准方程;
(2)设为椭圆的右顶点,过点且斜率不为0的直线与椭圆相交于两点,记直线的斜率分别为,求证:为定值.
当前题号:2 | 题型:解答题 | 难度:0.99
已知圆,椭圆的离心率为,圆上任意一点处的切线交椭圆于两点,当恰好位于轴上时,的面积为.
(1)求椭圆的方程;
(2)试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,离心率为,直线与椭圆C交于AB两点,且
(1)求椭圆C的方程.
(2)不经过点的直线被圆截得的弦长与椭圆C的长轴长相等,且直线与椭圆C交于DE两点,试判断的周长是否为定值?若是,求出定值;若不是,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
已知椭圆的方程为,点为长轴的右端点.为椭圆上关于原点对称的两点.直线与直线的斜率满足:
(1)求椭圆的标准方程;
(2)若直线与圆相切,且与椭圆相交于两点,求证:以线段为直径的圆恒过原点.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆过点,且离心率
(1)求椭圆的方程;
(2)已知斜率为的直线与椭圆交于两个不同点,点的坐标为,设直线的倾斜角分别为,证明:
当前题号:6 | 题型:解答题 | 难度:0.99
椭圆)的左、右焦点分别为在椭圆上,的周长为,面积的最大值为2.
(1)求椭圆的方程;
(2)直线)与椭圆交于,连接并延长交椭圆,连接,探索的斜率之比是否为定值并说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知椭圆的一个顶点为,离心率,直线交椭圆于两点.
(1)若直线的方程为,求弦的长;
(2)如果的重心恰好为椭圆的右焦点,求直线方程的一般式.
当前题号:8 | 题型:解答题 | 难度:0.99
椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的方程;
(2)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(3)在(2)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,证明为定值,并求出这个定值.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆过点,其离心率.
(1)求椭圆的方程;
(2)若直线不经过点,且与椭圆相交于两点(不重合),若直线与直线的斜率之积为.
(ⅰ)证明:过定点,并求出定点坐标;
(ⅱ)求的面积的最大值.
当前题号:10 | 题型:解答题 | 难度:0.99