刷题首页
题库
高中数学
题干
椭圆
的左、右焦点分别是
,
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为1.
(1)求椭圆
的方程;
(2)点
是椭圆
上除长轴端点外的任一点,连接
,
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(3)在(2)的条件下,过点
作斜率为
的直线
,使得
与椭圆
有且只有一个公共点,设直线
,
的斜率分别为
,
,若
,证明
为定值,并求出这个定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-21 10:12:38
答案(点此获取答案解析)
同类题1
如图,设
F
1
,
F
2
是椭圆
C
:
(
a
>
b
>0)的左、右焦点,直线
y
=
kx
(
k
>0)与椭圆
C
交于
A
,
B
.已知椭圆
C
的焦距是2,四边形
AF
1
BF
2
的周长是4
.
(1)求椭圆
C
的方程;
(2)直线
AF
1
,
BF
1
分别与椭圆
C
交于
M
,
N
,求△
MNF
1
面积的最大值.
同类题2
已知椭圆
:
,四点
,
,
,
中恰有三点在椭圆
上.
(1)求
的方程;
(2)设
的短轴端点分别为
,
,直线
:
交
于
,
两点,交
轴于
点,若
,求实数
的值.
同类题3
焦距为2,短轴长为4,且焦点在
轴上的椭圆的标准方程为________.
同类题4
已知椭圆
经过点
,离心率为
.
(1)求椭圆的方程;
(2)设过定点
的直线
与椭圆交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
同类题5
已知椭圆
的右焦点为
,过点
且垂直于
轴的直线与椭圆相交所得的弦长为
.
求椭圆
的方程;
过椭圆内一点
,斜率为
的直线
交椭圆于
两点,设直线
(
为坐标原点)的斜率分别为
,若对任意
,存在实数
,使得
,求实数
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题