- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
长轴长为
的椭圆的中心在原点,其焦点
,
在
轴上,抛物线的顶点在原点
,对称轴为
轴,两曲线在第一象限内相交于点
, 且
,
的面积为3.

(1)求椭圆和抛物线的标准方程;
(2)过点
作直线
分别与抛物线和椭圆交于
,
,若
,求直线
的斜率
.










(1)求椭圆和抛物线的标准方程;
(2)过点







已知点
在椭圆
:
上,且点
到
的左、右焦点的距离之和为
.
(1)求
的方程;
(2)设
为坐标原点,若
的弦
的中点在线段
(不含端点
,
)上,求
的取值范围.






(1)求

(2)设







阿基米德是古希腊数学家,他利用“逼近法”算出椭圆面积等于圆周率、椭圆的长半轴长、短半轴长三者的乘积.据此得某椭圆面积为
,且两焦点恰好将长轴三等分,则此椭圆的标准方程可以为( )

A.![]() | B.![]() | C.![]() | D.![]() |
已知A,B是焦距为
的椭圆
的上、下顶点,P是椭圆上异于顶点的任意一点,直线PA,PB的斜率之积为
.
(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右顶点,动点M满足
,连接CM交椭圆于点E,试问:x轴上是否存在定点T,使得
恒成立?若存在,求出点T坐标,若不存在,请说明理由.




(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右顶点,动点M满足


已知椭圆
的左焦点为F,短轴的两个端点分别为A,B,且
,
为等边三角形.

(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线
与椭圆C交于另一点J,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点A的两条互相垂直的直线,直线
与圆
相交于P,Q两点,直线
与椭圆C交于另一点R,求
面积最大值时,直线
的方程.




(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线



(3)已知






已知椭圆
:
的右焦点与短轴两端点构成一个面积为
的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.





(1)求椭圆

(2)设点






(3)设点








已知椭圆E的长轴长与焦距比为2:1,左焦点F(﹣2,0),一定点为P(﹣8,0).
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.