刷题首页
题库
高中数学
题干
已知椭圆
的左焦点为
F
,短轴的两个端点分别为
A
,
B
,且
,
为等边三角形.
(1)求椭圆
C
的方程;
(2)如图,点
M
在椭圆
C
上且位于第一象限内,它关于坐标原点
O
的对称点为
N
;过点
M
作
x
轴的垂线,垂足为
H
,直线
与椭圆
C
交于另一点
J
,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点
A
的两条互相垂直的直线,直线
与圆
相交于
P
,
Q
两点,直线
与椭圆
C
交于另一点
R
,求
面积最大值时,直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 12:12:31
答案(点此获取答案解析)
同类题1
抛物线
的焦点
是双曲线
的右焦点,点
是曲线
的交点,点
在抛物线的准线上,
是以点
为直角顶点的等腰直角三角形,则双曲线
的离心率为( )
A.
B.
C.
D.
同类题2
对于曲线
所在的平面上的定点
,若存在以点
为顶点的角
,使得
对于曲线
上的任意两个不同的点
恒成立,则称角
为曲线
的“
点视角”,并称其中最小的“
点视角”为曲线
相对于点
的”
点确视角”.已知曲线
和圆
是
轴上一点
(1)对于坐标原点
,写出曲线
的“
点确视角”的大小;
(2)若
在曲线
上,求
的最小值;
(3)若曲线
和圆
的“
点确视角”相等,求
点坐标.
同类题3
已知动圆
经过点
,且和直线
相切.
(Ⅰ)求该动圆圆心
的轨迹
的方程;
(Ⅱ)已知点
,若斜率为1的直线
与线段
相交(不经过坐标原点
和点
),且与曲线
交于
两点,求
面积的最大值.
同类题4
如图,抛物线
的焦点为
,抛物线上一定点
.
(1)求抛物线
的方程及准线
的方程;
(2)过焦点
的直线(不经过点
)与抛物线交于
两点,与准线
交于点
,记
的斜率分别为
,
,
,问是否存在常数
,使得
成立?若存在
,求出
的值;若不存在,说明理由.
同类题5
在矩形
中,
,
,
、
、
、
分别为矩形四条边的中点,以
,
所在直线分别为
,
轴建立直角坐标系(如图所示).若
、
分别在线段
、
上.且
.
(Ⅰ)求证:直线
与
的交点
总在椭圆
:
上;
(Ⅱ)若
、
为曲线
上两点,且直线
与直线
的斜率之积为
,求证:直线
过定点.
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求椭圆标准方程