- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动点M到定点(8,0)的距离等于M到(2,0)的距离的2倍,那么点M的轨迹方程___________________________
如图,中心为坐标原点O的两圆半径分别为
,
,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线
、
,
交
于点P.

(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;
(2)直线l:
与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为
时,求
的取值范围.







(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;
(2)直线l:



如图所示,有一条长度为1的线段
,其端点
,
在边长为4的正方形
的四边上滑动,当点
绕着正方形的四边滑动一周时,
的中点
所形成的轨迹长度为______.








圆
与
轴交于
、
两点(点
在点
的左侧),
、
是分别过
、
点的圆
的切线,过此圆上的另一个点
(
点是圆上任一不与
、
重合的动点)作此圆的切线,分别交
、
于
、
两点,且
、
两直线交于点
.
(
)设切点
坐标为
,求证:切线
的方程为
.
(
)设点
坐标为
,试写出
与
的关系表达式(写出详细推理与计算过程).






















(





(





已知抛物线Γ的准线方程为
.焦点为
.
(1)求证:抛物线Γ上任意一点
的坐标
都满足方程:
(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于
轴的直线与抛物线交于
两点,求线段
的中点
的轨迹方程.


(1)求证:抛物线Γ上任意一点



(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于



