- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
:
(
),设
为圆
与
轴负半轴的交点,过点
作圆
的弦
,并使弦
的中点恰好落在
轴上.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)延长
交曲线
于点
,曲线
在点
处的切线与直线
交于点
,试判断以点
为圆心,线段
长为半径的圆与直线
的位置关系,并证明你的结论.











(Ⅰ)求点


(Ⅱ)延长










已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点,

(1)求点M的轨迹方程;
(2)求
的取值范围.

(1)求点M的轨迹方程;
(2)求

阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果击中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点
与两定点
、
的距离之比为
(
,
),那么点
的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:
和点
,点
,
为圆
上动点,则
的最小值为( )













A.![]() | B.![]() | C.![]() | D.![]() |
如图,在平面直角坐标系中,点A是x轴正半轴上的任一点,且
,点B在射线ON上运动.
(1)若点
,当
为直角三角形时,求
的值;
(2)若点
,求点A关于射线
的对称点P的坐标;

(3)若
,C为线段AB的中点,若Q为点C关于射线ON的对称点,求点
的轨迹方程,并指出x、y的取值范围.

(1)若点



(2)若点



(3)若

