- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的弦长与中点弦
- + 已知圆的弦长求方程或参数
- 圆内接三角形的面积
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C:[x﹣(a﹣2)]2+(y﹣
a)2=16,定直线l经过点A(2,0),若对任意的实数a,定直线l被圆C截得的弦长始终为定值d,则圆心C到直线l的距离等于( )

A.8 | B.4![]() | C.4 | D.2![]() |
已知点
及圆
:
.
(1)若直线
过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点P的直线
与圆
交于
、
两点,当
时,求以线段
为直径的圆
的方程;



(1)若直线




(2)设过点P的直线







求圆心在直线l1:x-y-1=0上,与直线l2:4x+3y+14=0相切,截直线l3:3x+4y+10=0所得的弦长为6的圆的方程.
已知圆M的圆心在x轴上,且圆心在直线l1:x=-2的右侧,若圆M截直线l1所得的弦长为2
,且与直线l2:2x-
y-4=0相切,则圆M的方程为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
如图,已知A,B为圆O:x2+y2=4与y轴的交点,过点P(0,4)的直线l交圆O于M,N两点.

(1)若弦MN的长等于2
,求直线l的方程.
(2)若M,N都不与A,B重合时,是否存在定直线m,使得直线AN与BM的交点G恒在直线m上.若存在,求直线m的方程;若不存在,说明理由.

(1)若弦MN的长等于2

(2)若M,N都不与A,B重合时,是否存在定直线m,使得直线AN与BM的交点G恒在直线m上.若存在,求直线m的方程;若不存在,说明理由.