- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的方程
- 圆的标准方程
- 圆的一般方程
- 点与圆的位置关系
- 圆的几何性质
- 直线与圆的位置关系
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,自直线
:
上任意一点
引(2)所求轨迹
的一条切线,切点为
,求证:
.




(1)求

(2)若动点






(3)设








已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.
已知圆C经过A(5,3),B(4,4)两点,且圆心在x轴上.
(1)求圆C的标准方程;
(2)若直线l过点(5,2),且被圆C所截得的弦长为6,求直线l的方程.
(1)求圆C的标准方程;
(2)若直线l过点(5,2),且被圆C所截得的弦长为6,求直线l的方程.
已知线段AB的端点B的坐标是(4,2),端点A在圆C:(x+2)2+y2=16上运动.
(1)求线段AB的中点的轨迹方程H.
(2)判断(1)中轨迹H与圆C的位置关系.
(3)过点P(3,2)作两条相互垂直的直线MN,EF,分别交(1)中轨迹H于M,N和E,F,求四边形MNFE面积的最大值
(1)求线段AB的中点的轨迹方程H.
(2)判断(1)中轨迹H与圆C的位置关系.
(3)过点P(3,2)作两条相互垂直的直线MN,EF,分别交(1)中轨迹H于M,N和E,F,求四边形MNFE面积的最大值
已知椭圆
:
,设直线
:
是椭圆
的一条切线,两点
和
在切线
上.
(1)若
,
,
,
中恰有三点在椭圆
上,求椭圆
的方程;
(2)在(1)的条件下,证明:当
,
变化时,以
为直径的圆恒过定点,并求出定点坐标.








(1)若






(2)在(1)的条件下,证明:当



如图,圆
与
轴相切于点
,与
轴正半轴交于两点
(
在
的上方),且
.
(Ⅰ)圆
的标准方程为 ;
(Ⅱ)过点
任作一条直线与圆
相交于
两点,下列三个结论:
①
; ②
; ③
.
其中正确结论的序号是 .(写出所有正确结论的序号)








(Ⅰ)圆

(Ⅱ)过点



①



其中正确结论的序号是 .(写出所有正确结论的序号)
