- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的方程
- 圆的标准方程
- 圆的一般方程
- 点与圆的位置关系
- 圆的几何性质
- 直线与圆的位置关系
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,我国某海岸线可看作由圆弧AB和射线BC连接而成,其中圆弧AB所在圆O的半径为12海里,圆心角为120°,规定外轮除特许外,不得进入离我国海岸线12海里以内的区域.在港口A处设有观察站,外轮一旦进入规定区域,观察站会接收到预警信号,现从A处测得一外轮在北偏东60°,距离港口x海里的P处,沿直线PA方向航行.

(1)当x=30时,分别求出外轮到海岸线BC和弧AB的最短距离,并判断观察站是否接收到预警信号?
(2)当x为何值时,观察站开始接收到预警信号?

(1)当x=30时,分别求出外轮到海岸线BC和弧AB的最短距离,并判断观察站是否接收到预警信号?
(2)当x为何值时,观察站开始接收到预警信号?
已知圆
,直线
是圆
与圆
的公共弦
所在直线方程,且圆
的圆心在直线
上.
(1)求公共弦
的长度;
(2)求圆
的方程;
(3)过点
分别作直线
,
,交圆
于
,
,
,
四点,且
,求四边形
面积的最大值与最小值.







(1)求公共弦

(2)求圆

(3)过点










过原点O作圆x2+y2-8x=0的弦O
A. (1)求弦OA中点M的轨迹方程; (2)延长OA到N,使|OA|=|AN|,求N点的轨迹方程. |