- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- + 圆与方程
- 圆的方程
- 直线与圆的位置关系
- 圆与圆的位置关系
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
为坐标原点,椭圆
的下焦点为
,过点
且斜率为
的直线与椭圆相交于
,
两点.
(1)以
为直径的圆与
相切,求该圆的半径;
(2)在
轴上是否存在定点
,使得
为定值,若存在,求出点
的坐标;若不存在,请说明理由.







(1)以


(2)在




对于问题:“已知曲线
与曲线
有且只有两个公共点,求经过这两个公共点的直线方程”.某人的正解如下:曲线
的方程与曲线
的方程相加得
,这就是所求的直线方程.理由是:①两个方程相加后得到的表示直线;②两个公共点的坐标都分别满足曲线
的方程与曲线
的方程,则它们就满足两个方程相加后得到的方程;③两点确定一条直线.用类似的方法解下列问题:若曲线
与曲线
有且只有3个公共点,且它们不共线,则经过3个公共点的圆方程为_______.









已知集合
,在平面直角坐标系
中,点集
,在K中随机取出两个不同的元素,则这两个元素中恰有一个元素在圆
的内部的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
已知圆的方程
,从0,3,4,5,6,7,8,9,10这九个数中选出3个不同的数,分别作圆心的横坐标、纵坐标和圆的半径.问:
(1)可以作多少个不同的圆?
(2)经过原点的圆有多少个?
(3)圆心在直线上
的圆有多少个?

(1)可以作多少个不同的圆?
(2)经过原点的圆有多少个?
(3)圆心在直线上

如图,O为坐标原点,点F为抛物线C1:
的焦点,且抛物线C1上点M处的切线与圆C2:
相切于点Q.



(Ⅰ)当直线MQ的方程为
时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求
的最小值.





(Ⅰ)当直线MQ的方程为

(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求

已知抛物线
.
(1)若直线
与抛物线
相交于
两点,求
弦长;
(2)已知△
的三个顶点在抛物线
上运动.若点
在坐标原点,
边过定点
,点
在
上且
,求点
的轨迹方程.

(1)若直线




(2)已知△








