- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- + 圆与方程
- 圆的方程
- 直线与圆的位置关系
- 圆与圆的位置关系
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
:
和抛物线
:
,
为坐标原点.
(1)已知直线
和圆
相切,与抛物线
交于
两点,且满足
,求直线
的方程;
(2)过抛物线
上一点
作两直线
和圆
相切,且分别交抛物线
于
两点,若直线
的斜率为
,求点
的坐标.





(1)已知直线






(2)过抛物线









已知抛物线
:
的准线经过点
.
(1)求抛物线
的方程;
(2)设
是原点,直线
恒过定点
,且与抛物线
交于
,
两点,直线
与直线
,
分别交于点
,
.请问:是否存在以
为直径的圆经过
轴上的两个定点?若存在,求出两个定点的坐标;若不存在,请说明理由.



(1)求抛物线

(2)设













设抛物线C:y2=4x的焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(﹣1,0).
(1)当l与x轴垂直时,求△ABM的外接圆方程;
(2)记△AMF的面积为S1,△BMF的面积为S2,当S1=4S2时,求直线l的方程.
(1)当l与x轴垂直时,求△ABM的外接圆方程;
(2)记△AMF的面积为S1,△BMF的面积为S2,当S1=4S2时,求直线l的方程.
在平面直角坐标系
中,已知双曲线
:
.
(1)设
是
的左焦点,
是
右支上一点.若
,求
点的坐标;
(2)设斜率为1的直线
交
于
、
两点,若
与圆
相切,求证:
;
(3)设椭圆
:
.若
、
分别是
、
上的动点,且
,求证:
到直线
的距离是定值.



(1)设






(2)设斜率为1的直线







(3)设椭圆









已知椭圆
,其左右顶点分别为
,
,上下顶点分别为
,
.圆
是以线段
为直径的圆.
(1)求圆
的方程;
(2)若点
,
是椭圆上关于
轴对称的两个不同的点,直线
,
分别交
轴于点
、
,求证:
为定值;
(3)若点
是椭圆Γ上不同于点
的点,直线
与圆
的另一个交点为
.是否存在点
,使得
?若存在,求出点
的坐标,若不存在,说明理由.







(1)求圆

(2)若点









(3)若点







