- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,设椭圆
.
(1)过椭圆
的左焦点,作垂直于
轴的直线交椭圆
于
、
两点,若
,求实数
的值;
(2)已知点
,
、
是椭圆
上的动点,
,求
的取值范围;
(3)若直线
与椭圆
交于
、
两点,求证:对任意大于3的实数
,以线段
为直径的圆恒过定点,并求该定点的坐标.


(1)过椭圆







(2)已知点






(3)若直线






已知抛物线
的准线l经过椭圆
的左焦点,且l与椭圆交于A,B两点,过椭圆N右焦点
的直线交抛物线M于C,D两点,交椭圆于G,H两点,且
面积为3.
(1)求椭圆N的方程;
(2)当
时,求
.




(1)求椭圆N的方程;
(2)当


已知
,
为椭圆
的左右焦点,
在以
为圆心,1为半径的圆
上,且
.

(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
,
两点,过
与
垂直的直线
交圆
于
,
两点,
为线段
的中点,求
的面积的取值范围.








(1)求椭圆

(2)过点














已知点
在椭圆
:
(
)上,且点
到左焦点
的距离为3.
(1)求椭圆
的标准方程;
(2)设
为坐标原点,与直线
平行的直线
交椭圆
于不同两点
、
,求
面积的最大值.






(1)求椭圆

(2)设







设椭圆
的左焦点为
,下顶点为
,上顶点为
,
是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线
,过点
且斜率为
的直线与椭圆交于点
异于点
,线段
的垂直平分线与直线
交于点
,与直线
交于点
,若
.
(ⅰ)求
的值;
(ⅱ)已知点
,点
在椭圆上,若四边形
为平行四边形,求椭圆的方程.





(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线












(ⅰ)求

(ⅱ)已知点



已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为
|OB|.
(1)求椭圆C的方程;
,椭圆
,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M、N,试求弦长|MN|的取值范围.

(1)求椭圆C的方程;


已知椭圆
的离心率为
,
为椭圆上一点,且
到两焦点的距离之和为4.
(1)求椭圆
的标准方程;
(2)过点
的直线交椭圆
于点
,
,且满足
为坐标原点),求线段
的长度.




(1)求椭圆

(2)过点






已知椭圆
的左右焦点分别是
,
,离心率
过点
且垂直于x轴的直线被椭圆E截得的线段长为3.
(1)求椭圆E的方程;
(2)若直线l过椭圆E的右焦点
,且与x轴不重合,交椭圆E于M,N两点,求
的取值范围.





(1)求椭圆E的方程;
(2)若直线l过椭圆E的右焦点

