- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P作x轴的垂线交其“辅圆”于点Q,当点Q在点P的上方时,称点Q为点P的“上辅点”.已知椭圆
上的点
的上辅点为
.

(1)求椭圆E的方程;
(2)若
的面积等于
,求上辅点Q的坐标;
(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.




(1)求椭圆E的方程;
(2)若


(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.
已知椭圆
的左、右焦点分别为
、
,焦点为
的抛物线
的准线被椭圆
截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若点
、
到直线
的距离之积为
,求证:直线
与椭圆
相切.







(1)求椭圆

(2)若点






在平面直角坐标系中,若
,
,且
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设(Ⅰ)中曲线
的左、右顶点分别为
、
,过点
的直线
与曲线
交于两点
,
(不与
,
重合).若直线
与直线
相交于点
,试判断点
,
,
是否共线,并说明理由.



(Ⅰ)求动点


(Ⅱ)设(Ⅰ)中曲线
















某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:
①题目:“在平面直角坐标系
中,已知椭圆
的左顶点为
,过点
作两条斜率之积为2的射线与椭圆交于
,…”
②解:“设
的斜率为
,…点
,
,…”
据此,请你写出直线
的斜率为 .(用
表示)
①题目:“在平面直角坐标系





②解:“设




据此,请你写出直线


已知焦距为2
的椭圆
:
的右顶点为
,直线
与椭圆
交于
、
两点(
在
的左边),
在
轴上的射影为
,且四边形
是平行四边形.
(1)求椭圆
的方程;
(2)斜率为
的直线
与椭圆
交于两个不同的点
,
.
(i)若直线
过原点且与坐标轴不重合,
是直线
上一点,且
是以
为直角顶点的等腰直角三角形,求
的值;
(ii)若
是椭圆的左顶点,
是直线
上一点,且
,点
是
轴上异于点
的点,且以
为直径的圆恒过直线
和
的交点,求证:点
是定点.














(1)求椭圆

(2)斜率为





(i)若直线






(ii)若











已知椭圆
(
)的离心率为
,椭圆
上一点
到椭圆
两焦点距离之和为
,如图,
为坐标原点,平行与
的直线l交椭圆
于不同的两点
、
.

(1)求椭圆方程;
(2)当
在第一象限时,直线
,
交x轴于
,
,若PE=PF,求点
的坐标.













(1)求椭圆方程;
(2)当






已知椭圆
的右焦点为F
,点B是椭圆C的短轴的一个端点,ΔOFB的面积为
,椭圆C上的两点H、G关于原点O对称,且
、
的等差中项为2
(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线
与椭圆C交于不同的两点P、Q,且使得
成立?若存在,试求出直线
的方程;若不存在,请说明理由





(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线


