刷题首页
题库
高中数学
题干
已知点
在椭圆
:
(
)上,且点
到左焦点
的距离为3.
(1)求椭圆
的标准方程;
(2)设
为坐标原点,与直线
平行的直线
交椭圆
于不同两点
、
,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 12:43:50
答案(点此获取答案解析)
同类题1
求适合下列条件的椭圆的标准方程:
(1)焦点在
x
轴上,
a
=4,
c
=2;
(2)短轴长为6,离心率为
同类题2
椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的方程;
(2)若直线
:
交椭圆
于
,
两点,点
在椭圆
上,且不与
、
两点重合,直线
,
的斜率分别为
,
.求证:
,
之积为定值.
同类题3
已知
A
,
B
是焦距为
的椭圆
的上、下顶点,
P
是椭圆上异于顶点的任意一点,直线
PA
,
PB
的斜率之积为
.
(1)求椭圆的方程;
(2)若
C
,
D
分别是椭圆的左、右顶点,动点
M
满足
,连接
CM
交椭圆于点
E
,试问:
x
轴上是否存在定点
T
,使得
恒成立?若存在,求出点
T
坐标,若不存在,请说明理由.
同类题4
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)过原点
且与
轴不重合的直线交椭圆
于
,
两点,直线
分别与
轴交于点
,
,.求证:以
为直径的圆恒过交点
,
,并求出
面积的取值范围.
同类题5
顺次连接椭圆
的四个顶点恰好构成了一个边长为
且面积为
的菱形.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相切于点
,过点
作
,垂足为
,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积