- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左焦点为
,椭圆上动点
到点
的最远距离和最近距离分别为
和
.
(1)求椭圆的方程;
(2)设
分别为椭圆的左、右顶点,过点
且斜率为
的直线
与椭圆交于
、
两点,若
,
为坐标原点,求
的面积.






(1)求椭圆的方程;
(2)设









已知椭圆
的离心率为
,其左、右焦点分别为
,左、右顶点分别为
,上、下顶点分别为
,四边形
的面积为4.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,
(其中
为坐标原点),求直线
被以线段
为直径的圆截得的弦长.







(1)求椭圆

(2)直线







已知椭圆
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线l:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.










(1)求椭圆

(2)作与








已知椭圆E的方程为
(
),
,
分别为椭圆的左右焦点,A,B为椭圆E上关于原点对称两点,点M为椭圆E上异于A,B一点,直线
和直线
的斜率
和
满足:
.
(1)求椭圆E的标准方程;
(2)过
作直线l交椭圆于C,D两点,且
(
),求
面积的取值范围.









(1)求椭圆E的标准方程;
(2)过




在平面直角坐标系xOy中,直线l的参数方程为
(t为参数,a∈R).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为
.
(1)若点A(0,4)在直线l上,求直线l的极坐标方程;
(2)已知a>0,若点P在直线l上,点Q在曲线C上,若|PQ|最小值
为,求a的值.


(1)若点A(0,4)在直线l上,求直线l的极坐标方程;
(2)已知a>0,若点P在直线l上,点Q在曲线C上,若|PQ|最小值

已知点
、点
及抛物线
.
(1)若直线
过点
及抛物线
上一点
,当
最大时求直线
的方程;
(2)
轴上是否存在点
,使得过点
的任一条直线与抛物线
交于点
,且点
到直线
的距离相等?若存在,求出点
的坐标;若不存在,说明理由.



(1)若直线






(2)








已知两点A(﹣2,0)、B(2,0),动点P满足
.
(1)求动点P的轨迹Ω的方程;
(2)若椭圆
上点(x0,y0)处的切线方程是
:
①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证:直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值;若不存在,说明理由.

(1)求动点P的轨迹Ω的方程;
(2)若椭圆


①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证:直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值;若不存在,说明理由.
在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹
的方程;
(2)若直线
与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值











(1)求轨迹

(2)若直线






已知椭圆具有如下性质:若椭圆的方程为
,则椭圆在其上一点
处的切线方程为
,试运用该性质解决以下问题:椭圆
:
,其焦距为2,且过点
.点
为
在第一象限中的任意一点,过
作
的切线
,
分别与
轴和
轴的正半轴交于
两点,则
面积的最小值为( )
















A.![]() | B.![]() | C.![]() | D.![]() |