- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过原点O作两条相互垂直的射线,分别交椭圆C:
(
)于P、Q两点.
(1)证明:
为定值;
(2)若椭圆C:
(
)的长轴长为4,离心率为
,过原点O作直线
的垂线,垂足为D,求点D的轨迹方程.


(1)证明:

(2)若椭圆C:




已知椭圆
的一个顶点为抛物线
的焦点,点
在椭圆
上且
,
关于原点
的对称点为
,过
作
的垂线交椭圆于另一点
,连
交
轴于
.
(1)求椭圆
的方程;
(2)求证:
轴;
(3)记
的面积为
的面积为
,求
的取值范围.














(1)求椭圆

(2)求证:

(3)记




设椭圆
,其长轴长是短轴长的
倍,过焦点且垂直于
轴的直线被椭圆截得的弦长为
.

(1)求椭圆
的方程;
(2)点
是椭圆
上横坐标大于
的动点,点
在
轴上,圆
内切于
,试判断点
在何位置时
的长度最小,并证明你的判断.





(1)求椭圆

(2)点









已知抛物线
和
所围成的封闭曲线如图所示,给定点
,若在此封闭曲线上恰有三对不同的点,满足每一对点关于点
对称,则实数
的取值范围是







A.![]() | B.![]() |
C.![]() | D.![]() |
已知圆锥曲线
的方程为
.
(
)在所给坐标系中画出圆锥曲线
.
(
)圆锥曲线
的离心率
__________.
(
)如果顶点在原点的抛物线
与圆锥曲线
有一个公共焦点
,且过第一象限,则
(i)交点
的坐标为__________.
(ii)抛物线
的方程为__________.
(iii)在图中画出抛物线
的准线.
(
)已知矩形
各顶点都在圆锥曲线
上,则矩形
面积的最大值为__________.


(


(



(




(i)交点

(ii)抛物线

(iii)在图中画出抛物线

(




