刷题首页
题库
高中数学
题干
如图,三棱柱
中,
平面
,
,
,点
在线段
上,且
,
.
(1)试用空间向量证明直线
与平面
不平行;
(2)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(3)在(2)的条件下,设平面
平面
,求直线
与平面
的所成角.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 01:39:14
答案(点此获取答案解析)
同类题1
如图,四边形
ABCD
为矩形,平面
ABCD
⊥平面
ABE
,
F
为
CE
的中点,且
AE
⊥
BE
.
(1)求证:
AE
∥平面
BFD
:
(2)求证:
BF
⊥
AE
.
同类题2
平面
α
的一个法向量是
n
=(
,
-
1,
),平面
β
的一个法向量是
m
=(
-
3,6,
-
2),则平面
α
与平面β的关系是( )
A.平行
B.重合
C.平行或重合
D.垂直
同类题3
设
是平面
的法向量,
是直线
的方向向量,则直线
与平面
的位置关系是()
A.平行或直线在平面内
B.垂直
C.相交但不垂直
D.不能确定
同类题4
在如图所示的几何体中,四边形
CDEF
为正方形,四边形
ABCD
为梯形,
,
,
,
平面
ABCD
.
求
BE
与平面
EAC
所成角的正弦值;
线段
BE
上是否存在点
M
,使平面
平面
DFM
?若存在,求
的值;若不存在,请说明理由.
同类题5
已知棱长为1的正方体ABCD-A
1
B
1
C
1
D
1
中,E、F分别是B
1
C
1
和C
1
D
1
的中点,点A
1
到平面DBEF的距离
.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明