刷题首页
题库
高中数学
题干
如图,三棱柱
中,
平面
,
,
,点
在线段
上,且
,
.
(1)试用空间向量证明直线
与平面
不平行;
(2)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(3)在(2)的条件下,设平面
平面
,求直线
与平面
的所成角.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 01:39:14
答案(点此获取答案解析)
同类题1
在如图所示的多面体
ABCDE
,
AB
∥
DE
,
AB
⊥
AD
,△
ACD
是正三角形.
AD
=
DE
=2
AB
=2,
EC
=2
,
F
是
CD
的中点.
(1)求证
AF
∥平面
BCE
;
(2)求直线
AD
与平面
BCE
所成角的正弦值.
同类题2
如图,在三棱柱
中,
平面
,
,
,
的中点为
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题3
如图所示,正方体
ABCD-A
1
B
1
C
1
D
1
的棱长为
a
,
M
、
N
分别为
A
1
B
和
AC
上的点,
A
1
M
=
AN
=
a
,则
MN
与平面
BB
1
C
1
C
的位置关系是________.
同类题4
如图,已知矩形ABCD中,AB=1,BC=
,PA
平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQ
QD?并说明理由;
(2)若边上有且只有一个点Q,使得PQ
QD,求这时二面角Q
的正切。
同类题5
如下图所示,在三棱锥
P
-
ABC
中,
PA
⊥底面
ABC
,
PA
=
AB
,∠
ABC
=60°,∠
BCA
=90°,点
D
,
E
分别在棱
PB
,
PC
上,且
DE
∥
BC
.
(1)求证:
BC
⊥平面
PAC
;
(2)当
D
为
PB
的中点时,求
AD
与平面
PAC
所成的角的正弦值;
(3)是否存在点
E
,使得二面角
A
-
DE
-
P
为直二面角?并说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明