- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 面面垂直证线面垂直
- 空间垂直的转化
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
梯形
中,
,矩形
所在平面与平面
垂直,且
,
.

(1)求证:平面
平面
;
(2)若P为线段
上一点,且异面直线
与
所成角为45°,求平面
与平面
所成锐角的余弦值.







(1)求证:平面


(2)若P为线段





如图,在三棱锥D﹣ABC中,O为线段AC上一点,平面ADC⊥平面ABC,且△ADO,△ABO为等腰直角三角形,斜边AO=4
.

(Ⅰ)求证:AC⊥BD;
(Ⅱ)将△BDO绕DO旋转一周,求所得旋转体的体积.


(Ⅰ)求证:AC⊥BD;
(Ⅱ)将△BDO绕DO旋转一周,求所得旋转体的体积.
设三棱锥
的每个顶点都在球
的球面上,
是面积为
的等边三角形,
,
,且平面
平面
.

(1)确定
的位置(需要说明理由),并证明:平面
平面
.
(2)与侧面
平行的平面
与棱
,
,
分别交于
,
,
,求四面体
的体积的最大值.









(1)确定



(2)与侧面









如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.

(1)证明:
平面
.
(2)若
,当三棱锥
的体积最大时,求
到平面
的距离.













(1)证明:


(2)若



