- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,E为DD1中点.

(1)求证:BD1∥平面ACE;
(2)求证:BD1⊥AC.

(1)求证:BD1∥平面ACE;
(2)求证:BD1⊥AC.
如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,正确的是_____.
①AC∥面PQMN;②AC=BD;③BD∥面PQMN;④AC⊥BD
①AC∥面PQMN;②AC=BD;③BD∥面PQMN;④AC⊥BD

已知四棱台
中,
平面ABCD,四边形ABCD为平行四边形,
,
,
,
,E为DC中点.

(1)求证:
平面
;
(2)求证:
;
(3)求三棱锥
的高.
(注:棱台的两底面相似)







(1)求证:


(2)求证:

(3)求三棱锥

(注:棱台的两底面相似)
在三棱锥A﹣BCD中,△ABD和△ACD是边长为2的等边三角形,
,O、E分别是BC、AC的中点.

(1)求证:OE∥平面ABD;
(2)求证:平面ABC⊥平面BCD;
(3)求三棱锥A﹣BCD的表面积.


(1)求证:OE∥平面ABD;
(2)求证:平面ABC⊥平面BCD;
(3)求三棱锥A﹣BCD的表面积.
如图,已知四棱锥
的底面为矩形,D为
的中点,AC⊥平面BCC1B1.

(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=
,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.



(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=

(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
如图,已知四棱锥
的底面为矩形,D为
的中点,AC⊥平面BCC1B1.

(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=
,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.



(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=

(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
.如图1,直角梯形ABCD中,
,E,F分别为边AD和BC上的点,且EF//AB,AD=2AE=2AB=4FC=4将四边形EFCD沿EF折起(如图2),使AD=A


A. (Ⅰ)求证:BC//平面DAE; (Ⅱ)求四棱锥D—AEFB的体积; (Ⅲ)求面CBD与面DAE所成锐二面角的余弦值. |
