- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱锥
中,
底面ABC,
,点E、F分别为PA、AB的中点,点D在PC上,且
.

(1)证明:
平面BDE;
(2)若
是边长为2的等边三角形,求三棱锥
的体积.





(1)证明:

(2)若


如图1,在△
中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,
为
的中点,如图2.

(1)求证:
平面
;
(2)求证:平面
平面
;
(3)线段
上是否存在点
,使得
平面
?说明理由.

















(1)求证:


(2)求证:平面


(3)线段




如图,在四棱锥
中,四边形
是边长为2的正方形,
,
为
的中点,点
在
上,
平面
,
在
的延长线上,且
.

(1)证明:
平面
.
(2)过点
作
的平行线,与直线
相交于点
,当点
在线段
上运动时,二面角
能否等于
?请说明理由.













(1)证明:


(2)过点








如图,在三棱柱
中,
是边长为2的菱形,且
,
是矩形,
,且平面
平面
,
点在线段
上移动(
不与
重合),
是
的中点.

(1)当四面体
的外接球的表面积为
时,证明:
.平面
(2)当四面体
的体积最大时,求平面
与平面
所成锐二面角的余弦值.














(1)当四面体




(2)当四面体



如图,在三棱锥
中,
是边长为1的正三角形,
,
.

(1)求证:
;
(2)点
是棱
的中点,点P在底面
内的射影为点
,证明:
平面
;
(3)求直线
和平面
所成角的大小.





(1)求证:

(2)点






(3)求直线

