- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知棱柱
的底面是菱形,且
面ABCD,
,F为棱
的中点,M为线段
的中点.

(1)求证:
面ABCD;
(2)判断直线MF与平面
的位置关系,并证明你的结论;
(3)求三棱锥
的体积.






(1)求证:

(2)判断直线MF与平面

(3)求三棱锥

如图,在四棱锥
中,底面四边形
是矩形,
平面
,
分别是
的中点,
.
(1)求证:
平面
;
(2)求二面角
的大小;
(3)若
,求直线
与平面
所成角的正弦值.







(1)求证:


(2)求二面角

(3)若




如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=
,AD=2,PA=PD=
,E,F分别是棱AD,PC的中点.

(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°.
①证明:平面PBC⊥平面ABCD;
②求直线EF与平面PBC所成角的正弦值.



(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°.
①证明:平面PBC⊥平面ABCD;
②求直线EF与平面PBC所成角的正弦值.
如图,已知
为等边三角形,
为等腰直角三角形,
.平面
平面ABD,点E与点D在平面ABC的同侧,且
,
.点F为AD中点,连接EF.

(1)求证:
平面ABC;
(2)求二面角
的余弦值.







(1)求证:

(2)求二面角

如图,圆锥的顶点为
,底面圆心为
,线段
和线段
都是底面圆的直径,且直线
与直线
的夹角为
,已知
,
.
(1)求该圆锥的体积;
(2)求证:直线
平行于平面
,并求直线
到平面
的距离.









(1)求该圆锥的体积;
(2)求证:直线





在长方体
中,
,E,F,P,Q分别为棱


的中点,则下列结论正确的是( )







A.![]() | B.![]() |
C.![]() | D.直线![]() ![]() ![]() |