- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- 平行公理
- 异面直线
- 异面直线所成的角
- + 线面关系
- 判断图形中的线面关系
- 用定义证明线面关系
- 线面关系有关命题的判断
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出以下说法:①不共面的四点中,任意三点不共线;
②有三个不同公共点的两个平面重合;
③没有公共点的两条直线是异面直线;
④分别和两条异面直线都相交的两条直线异面;
⑤一条直线和两条异面直线都相交,则它们可以确定两个平面.
其中正确结论的序号是_______ .
②有三个不同公共点的两个平面重合;
③没有公共点的两条直线是异面直线;
④分别和两条异面直线都相交的两条直线异面;
⑤一条直线和两条异面直线都相交,则它们可以确定两个平面.
其中正确结论的序号是
已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,①a∥c,b∥c⇒a∥b;②a∥β,b∥β⇒a∥b;③a∥c,c∥α⇒a∥α;④a∥β,a∥α⇒α∥β;⑤a⊄α,b⊂α,a∥b⇒a∥α.
其中正确的命题是( )
其中正确的命题是( )
A.①⑤ | B.①② |
C.②④ | D.③⑤ |
m,n是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法:
①m⊥α,n∥β,α∥β⇒m⊥n;
②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;
④m⊥α,m∥n,α∥β⇒n⊥β.
其中正确说法的个数为 ( )
①m⊥α,n∥β,α∥β⇒m⊥n;
②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;
④m⊥α,m∥n,α∥β⇒n⊥β.
其中正确说法的个数为 ( )
A.1 | B.2 | C.3 | D.4 |
有以下三种说法,其中正确的是 ( )
①若直线a与平面α相交,则α内不存在与a平行的直线;
②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行;
③直线a,b满足a∥α,a∥b,且b⊂α,则a平行于经过b的任何平面.
①若直线a与平面α相交,则α内不存在与a平行的直线;
②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行;
③直线a,b满足a∥α,a∥b,且b⊂α,则a平行于经过b的任何平面.
A.①② | B.①③ | C.②③ | D.① |
设m,n是两条不同的直线,α,β是两个不同的平面 ,则( )
A.若m⊥n,n∥α,则m⊥α |
B.若m∥β,β⊥α,则m⊥α |
C.若m⊥β,n⊥β,n⊥α,则m⊥α |
D.若m⊥n,n⊥β,β⊥α,则m⊥α |
(2016·杭州高二检测)设α,β,γ是三个互不重合的平面,m,n是直线,给出下列命题:①α⊥β,β⊥γ,则α⊥γ;②若α∥β,m⊄β,m∥α,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥α,n∥β,α⊥β,则m⊥n,其中正确命题的个数为 ( )
A.0 | B.1 | C.2 | D.3 |
设α,β,γ为平面,l,m,n为直线,则能得到m⊥β的一个条件为 ( )
A.α⊥β,α∩β=l,m⊥l | B.n⊥α,n⊥β,m⊥α |
C.α∩γ=m,α⊥γ,β⊥γ | D.α⊥γ,β⊥γ,m⊥α |