- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面的基本性质及辨析
- 点(线)确定的平面数量问题
- + 空间中的点(线)共面问题
- 空间中的点共线问题
- 空间中的线共点问题
- 由平面的基本性质作截面图形
- 平面的基本性质的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,多面体
中,
两两垂直,平面
平面
,平面
平面
,
.
(1)证明四边形
是正方形;
(2)判断点
是否四点共面,并说明为什么?
(3)连结
,求证:
平面
.







(1)证明四边形

(2)判断点

(3)连结




下列说法错误的是( )
A.两两相交且不过同一点的三条直线必在同一平面内; |
B.过直线外一点有且只有一个平面与已知直线垂直; |
C.如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直; |
D.如果两条直线和一个平面所成的角相等,则这两条直线一定平行. |
下列说法不正确的是( )
A.空间中,一组对边平行且相等的四边形是一定是平行四边形; |
B.同一平面的两条垂线一定共面; |
C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; |
D.过一条直线有且只有一个平面与已知平面垂直. |
如图,四边形ABEF和ABCD都是直角梯形,
,
,
,
,
,G,H分别为FA,FD的中点.

(1)证明:四边形BCHG是平行四边形.
(2)C,D,F,E四点是否共面?为什么?






(1)证明:四边形BCHG是平行四边形.
(2)C,D,F,E四点是否共面?为什么?
设a,b,c是空间的三条直线,下面给出四个命题:
①若a⊥b,b⊥c,则a∥c;
②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是____.
①若a⊥b,b⊥c,则a∥c;
②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是____.
如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.

(1)证明:M,N,C,D1四点共面;
(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.

(1)证明:M,N,C,D1四点共面;
(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.
下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( )
A.1个 | B.2个 | C.3个 | D.4个 |