周长为的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_______.
当前题号:1 | 题型:填空题 | 难度:0.99
某隧道设计为双向四车道,车道总宽22米。要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个桶圆形状(如图)。

(1)若最大拱高为6米,则隧道设计的拱宽是多少米?
(2)若最大拱高不小于6米,则应如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小,并求出最小土方量?(已知:椭圆的面积公式为,本题结果拱高和拱宽精确到0.01米,土方量精确到1米3
当前题号:2 | 题型:解答题 | 难度:0.99
用硬纸做一个体积为32,高为2的长方体无盖纸盒,这个纸盒的长、宽各为多少时,表面积最小?并求出最小值.
当前题号:3 | 题型:解答题 | 难度:0.99
南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高(    )
A.有最小值B.有最大值C.有最小值D.有最大值
当前题号:4 | 题型:单选题 | 难度:0.99
如图,某柱体实心铜质零件的截面边界是长度为55毫米线段和88毫米的线段以及圆心为,半径为的一段圆弧构成,其中

(1)求半径的长度;
(2)现知该零件的厚度为3毫米,试求该零件的重量(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).(
当前题号:5 | 题型:解答题 | 难度:0.99
如图所示,某传动装置由两个陀螺组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为);

(1)求陀螺的体积;
(2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求之间的距离;
当前题号:6 | 题型:解答题 | 难度:0.99
我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系的坐标平面内,若函数的图象与轴围成一个封闭区域,将区域沿轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域面积相等,则此圆柱的体积为( )
A.B.C.2D.
当前题号:7 | 题型:单选题 | 难度:0.99
我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围城一个封闭的区域,将区域沿轴的正方向平移个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域的面积相等,则此圆柱的体积为 _______.

图一 图二
当前题号:8 | 题型:填空题 | 难度:0.99
如图,将边长为2的正六边形铁皮的六个角各剪去一个全等四边形,再折起做一个无盖正六棱柱容器,其容积最大时,底面边长为_______.
当前题号:9 | 题型:填空题 | 难度:0.99
一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为()
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99