- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 组合体的构成
- 组合体表面两点间的最短路径
- 组合体截面的形状
- + 组合体的切接问题
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知棱长为2cm的正方体容器内盛满水,把半径为1cm的钢球放入水中,刚好被淹没;然后放入一个铁球,使它也淹没于水中.要使流出的水量最多,这个铁球的半径应为多少?
如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,且圆柱的体积与内切球的体积之比及圆柱的表面积与内切球的表面积之比均为
,相传这个图形表达了阿基米德最引以为豪的发现.若圆柱的内切球的体积为
,则该球的内接正方体的表面积为__________.



如图,在菱形ABCD中,∠BAD=60°,AB=2
,E为对角线BD的中点,将△ABD沿BD折起到△PBD的位置,若∠PEC=120°,则三棱锥P﹣BCD的外接球的表面积为( )



A.28π | B.32π | C.16π | D.12π |
在《九章算术》第五卷《商功》中,将底面为正方形,顶点在底面上的射影为底面中心的四棱锥称为方锥,也就是正四棱锥.已知球内接方锥的高为6,体积为48,则该球的表面积为__________.