- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在底面是矩形的四棱锥
中,
平面
,
,
.

(1)求证:平面
平面
;
(2)在
上是否存在一点
,使得
到平面
的距离为1?若存在,求出
;若不存在,请说明理由.






(1)求证:平面


(2)在





已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点.
(1)求点D到平面PEF的距离;
(2)求直线AC到平面PEF的距离.
如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角FCDA的余弦值.
(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角FCDA的余弦值.

如图1,在直角梯形ABCD中,
,
,
,四边形ABEF是正方形.将正方形ABEF沿AB折起到四边形
的位置,使平面
平面ABCD,M为
的中点,如图2.
图1
图2
(1)求证:
;
(2)求平面
与平面
所成锐二面角的余弦值.






图1


(1)求证:

(2)求平面


如图,底面
是边长为2且
的菱形,
平面
,
,且
,
.

(1)求证:平面
平面
;
(2)点
在线段
上,且三棱锥
的体积是三棱锥
的体积的两倍,求二面角
的正弦值.








(1)求证:平面


(2)点





如图,已知正方体OABCO′A′B′C′,且=a,
=b,
=c.
(1)用a,b,c表示向量;
(2)设G,H分别是侧面BB′C′C和O′A′B′C′的中心,用a,b,c表示.
如图,在长方体ABCDA1B1C1D1中,AB=4,BC=1,AA1=3,已知向量a在基底{
}下的坐标为(2,1,-3).若分别以
的方向为x轴,y轴,z轴正方向建立空间直角坐标系,则a的空间直角坐标为( )




A.(2,1,-3) | B.(-1,2,-3) |
C.(1,-8,9) | D.(-1,8,-9) |