- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
四棱锥P﹣ABCD中,AD
BC,BC⊥CD,BC=CD=2AD=2,PD=
,侧面PBC是等边三角形.

(1)证明:PA⊥平面PBC;
(2)求BC与平面PCD所成角的余弦值.



(1)证明:PA⊥平面PBC;
(2)求BC与平面PCD所成角的余弦值.
已知点A、B、C的坐标分别为(0,1,2),(1,2,3),(1,3,1).
(1)若
,且
,求y的值;
(2)若D的坐标为(x,5,3),且A、B、C、D四点共面,求x的值.
(1)若


(2)若D的坐标为(x,5,3),且A、B、C、D四点共面,求x的值.