- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在边长为8的菱形
中,
,点
,
分别是边
,
的四等分点,
,
,
,
交于
点,沿
将
翻折到
,连接
,
,
,得到如图的五棱锥
,且
与底面
所成角的正弦值为
.


(1)求证:
平面
;
(2)求四棱锥
的体积.























(1)求证:


(2)求四棱锥

写出下面平面几何中的常见结论在立体几何中也成立的所有序号______.
①四边形内角和为
;
②垂直的两条直线必相交;
③垂直同一条直线的两条直线平行;
④平行同一条直线的两条直线平行;
⑤四边相等的四边形,其对角线垂直;
⑥到三角形三边距离相等的点是这个三角形的内心;
⑦到一个角的两边距离相等的点必在这个角的角平分线上;
⑧在平面几何中有“一组平行线(至少3条)被两条直线所截得的对应线段成比例”的结论,则这一结论可推广到立体几何中“一组平行平面(至少3个)被两条直线所截得的对应线段也成比例.”
①四边形内角和为

②垂直的两条直线必相交;
③垂直同一条直线的两条直线平行;
④平行同一条直线的两条直线平行;
⑤四边相等的四边形,其对角线垂直;
⑥到三角形三边距离相等的点是这个三角形的内心;
⑦到一个角的两边距离相等的点必在这个角的角平分线上;
⑧在平面几何中有“一组平行线(至少3条)被两条直线所截得的对应线段成比例”的结论,则这一结论可推广到立体几何中“一组平行平面(至少3个)被两条直线所截得的对应线段也成比例.”
如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,该几何体是由一个圆锥和一个圆柱组成,若在这个几何体内任取一点,则该点取自圆锥内的概率为________.

正方体
的棱长为4,点
在棱
上,且
,点
是正方体下底面
内(含边界)的动点,且动点
到直线
的距离与点
到点
的距离的平方差为16,则动点
到
点的最小值是( ).












A.![]() | B.![]() | C.![]() | D.![]() |
椭圆
的左、右顶点分别为
、
,短轴为
,将椭圆沿
轴折成一个二面角,使得
点在平面
上的射影恰好为椭圆的右焦点,则该二面角
的平面角大小为( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知四棱锥
的高为1,底面是边长为2的正方形,顶点在底面的投影是底面的中心,E是
的中点,动点P在棱锥表面上运动,并且总保持
,则动点P的轨迹的周长为______ .


