- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- + 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线
是以点
为圆心的圆的一部分,其中
;曲线
是抛物线
的一部分;
,且
恰好等于圆
的半径.假定拟建体育馆的高
(单位:米,下同).

(1)若
,
,求
、
的长度;
(2)若要求体育馆侧面的最大宽度
不超过
米,求
的取值范围;
(3)若
,求
的最大值.










(1)若




(2)若要求体育馆侧面的最大宽度



(3)若


已知函数
,其中常数
.
(1)当
时,
的最小值;
(2)讨论函数的奇偶性,并说明理由;
(3)当
时,是否存在实数
,使得不等式
对任意
恒成立?若存在,求出所有满足条件的
的值;若不存在,请说明理由.


(1)当


(2)讨论函数的奇偶性,并说明理由;
(3)当





已知函数
,给出下列3个命题:
:若
,则
的最大值为16;
:不等式
的解集为集合
的真子集;
:当
时,若
恒成立,则
,
那么,这3个命题中所有的真命题是______.











那么,这3个命题中所有的真命题是______.