- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式(均值定理)
- + 基本(均值)不等式求最值
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大型超市公司计划在
市新城区开设分店,为确定在新城区开设分店的个数,该公司对该市已开设分店的其他区的数据统计后得到下列信息(其中
表示在该区开设分店的个数,
表示这
个分店的年收入之和):
(Ⅰ)该公司经过初步判断,可用线性回归模型拟合
与
的关系,求
关于
的回归方程;
(Ⅱ)假设该公司每年在新城区获得的总利润
(单位:万元)与
,
之间的关系为
,请根据(Ⅰ)中的线性回归方程,估算该公司在新城区开设多少个分店时,才能使新城区每年每个分店的平均利润最大.
参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.




分店个数![]() | 2 | 3 | 4 | 5 | 6 |
年收入![]() | 250 | 300 | 400 | 450 | 600 |
(Ⅰ)该公司经过初步判断,可用线性回归模型拟合




(Ⅱ)假设该公司每年在新城区获得的总利润




参考公式:回归方程


