- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式(均值定理)
- 由基本不等式比较大小
- 由基本不等式证明不等关系
- 基本(均值)不等式求最值
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
分别是椭圆
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆
的方程;
(2)设过点
的直线
被椭圆
和圆
所截得的弦长分别为
,当
最大时,求直线
的方程.











(1)求椭圆

(2)设过点







如果正数
满足
,那么()


A.![]() ![]() |
B.![]() ![]() |
C.![]() ![]() |
D.![]() ![]() |