- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- + 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于等差数列和等比数列,我国古代很早就有研究成果,北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差级数求和的问题.现有一货物堆,从上向下查,第一层有2个货物,第二层比第一层多3个,第三层比第二层多4个,以此类推,记第
层货物的个数为
,则数列
的通项公式
_______,数列
的前
项和
_______.







设数列
满足
;
(1)若
,求证:数列
为等比数列;
(2)在(1)的条件下,对于正整数
,若
这三项经适当排序后能构成等差数列,求符合条件的数组
;
(3)若
是
的前
项和,求不超过
的最大整数.


(1)若


(2)在(1)的条件下,对于正整数



(3)若



