- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- + 数列求和
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}的通项公式为an=(n﹣k1)(n﹣k2),其中k1,k2∈Z:
(1)试写出一组k1,k2∈Z的值,使得数列{an}中的各项均为正数;
(2)若k1=1、k2∈N*,数列{bn}满足bn=
,且对任意m∈N*(m≠3),均有b3<bm,写出所有满足条件的k2的值;
(3)若0<k1<k2,数列{cn}满足cn=an+|an|,其前n项和为Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、Sn中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.
(1)试写出一组k1,k2∈Z的值,使得数列{an}中的各项均为正数;
(2)若k1=1、k2∈N*,数列{bn}满足bn=

(3)若0<k1<k2,数列{cn}满足cn=an+|an|,其前n项和为Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、Sn中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.
对于数列
,如果存在一个正整数
,使得对任意
,都有
.成立,那么,就把这样的一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,简称周期:例如:当
时,
是周期为1的周期数列:当
时,
是周期为4的周期数列.
(1)设数列
满足
(
不同时为0),求证:数列
是周期数列,并求数列
前2020项和
;
(2)设数列
前项
和为
,且
;
①若
,试判断
是否为周期数列,并说明理由;
②若
,试判断
是否为周期数列,并说明理由;
(3)设数列
满足
,数列
前
项和为
,试问是否存在
,使对任意
,都有
成立,若存在,求出
的取值范围,若不存在,说明理由.












(1)设数列






(2)设数列




①若


②若


(3)设数列









某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列
,每年发放电动型汽车牌照数为构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列


(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
![]() | ![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() | |