- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- + 数列求和
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
阶方阵
中的各元素均为正数,其中每行成等差数列,每列都是公比为2的等比数列,已知
.
(1)求
和
的值;
(2)计算行列式
和
;
(3)设
,证明:当
是3的倍数时,
能被21整除.



(1)求


(2)计算行列式


(3)设



已知数列
是各项均不为0的等差数列,公差为
,
为其前
项和,且满足
.数列
满足
,
为数列
的前
项和.
(1)求
;
(2)求
;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.










(1)求

(2)求

(3)若对任意的


