- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- + 等比数列的通项公式
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(题文)(题文)已知正项等比数列
,首项
,前
项和为
,且
、
,
成等差数列.
(1)求数列
的通项公式;
(2)数列
的前
项和为
,若对任意正整数
,都有
,求
的最小值.








(1)求数列

(2)数列






如图给出一个“三角形数阵”,已知每一列的数成等差数列,从第三行起,每一行的数成等比数列,每一行的公比都相等,记第
行第
列的数为
(
,
),则
()








A.![]() | B.![]() | C.![]() | D.![]() |