- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等差数列及其通项公式
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
德国著名数学家高斯,享有“数学王子”之美誉.他在研究圆内整点问题时,定义了一个函数
,其中
表示不超过
的最大整数,比如
. 根据以上定义,当
时,数列
,
,
( )








A.是等差数列,也是等比数列 | B.是等差数列,不是等比数列 |
C.是等比数列,不是等差数列 | D.不是等差数列,也不是等比数列 |
若无穷数列
满足:对任意两个正整数
,
与
至少有一个成立,则称这个数列为“和谐数列”.
(Ⅰ)求证:若数列
为等差数列,则
为“和谐数列”;
(Ⅱ)求证:若数列
为“和谐数列”,则数列
从第
项起为等差数列;
(Ⅲ)若
是各项均为整数的“和谐数列”,满足
,且存在
使得
,
,求p的所有可能值.





(Ⅰ)求证:若数列


(Ⅱ)求证:若数列



(Ⅲ)若




