- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等差数列及其通项公式
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数列
的前
项和为
,若对任意的正整数
,总存在正整数
,使得
,则称数列
是“
数列”.
(1)数列
的前
项和
,判断数列
是否为“
数列”,并说明理由;
(2)数列
是等差数列,其首项
,公差
,数列
是“
数列”,求
的值;
(3)证明:对任意的等差数列
,总存在两个“
数列”
和
,使得
成立.








(1)数列





(2)数列






(3)证明:对任意的等差数列





已知等差数列
的首项
,公差
,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项.
(1)求数列
的通项公式;
(2)设
,
,求
.



(1)求数列

(2)设


