- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- + 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设集合
由满足下列两个条件的数列
构成:①
②存在实数
使
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
其中
;
试判断数列
是否为集合
的元素;
(2)数列
的前
项和为
且对任意正整数
点
在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
且对满足条件②中的实数
的最小值
都有
求证:数列
一定是单调递增数列.






(1)现在给出只有5项的有限数列





(2)数列








(3)设数列





已知数列
,若
为等比数列,则称
具有性质P.
(1)若数列
具有性质P,且
,求
、
的值;
(2)若
,求证:数列
具有性质P;
(3)设
,数列
具有性质P,其中

,若
,求正整数n的取值范围.




(1)若数列





(2)若


(3)设





