- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若无穷数列
满足:
是正实数,当
时,
,则称
是“
—数列”.
(1)若
是“
—数列”且
,写出
的所有可能值;
(2)设
是“
—数列”,证明:
是等差数列当且仅当
单调递减;
是等比数列当且仅当
单调递增;
(3)若
是“
—数列”且是周期数列(即存在正整数
,使得对任意正整数
,都有
),求集合
的元素个数的所有可能值的个数.






(1)若




(2)设






(3)若






有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有1个这种细菌和200个这种病毒,问细菌将病毒全部杀死至少需要( )
A.6秒钟 | B.7秒钟 | C.8秒钟 | D.9秒钟 |
如图,将数字1,2,3,…,
(
)全部填入一个2行
列的表格中,每格填一个数字,第一行填入的数字依次为
,
,…,
,第二行填入的数字依次为
,
,…,
.记
.

(Ⅰ)当
时,若
,
,
,写出
的所有可能的取值;
(Ⅱ)给定正整数
.试给出
,
,…,
的一组取值,使得无论
,
,…,
填写的顺序如何,
都只有一个取值,并求出此时
的值;
(Ⅲ)求证:对于给定的
以及满足条件的所有填法,
的所有取值的奇偶性相同.












(Ⅰ)当





(Ⅱ)给定正整数









(Ⅲ)求证:对于给定的

