- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在数列
中,
.从数列
中选出
项并按原顺序组成的新数列记为
,并称
为数列
的
项子列.例如数列
、
、
、
为
的一个
项子列.
(1)试写出数列
的一个
项子列,并使其为等差数列;
(2)如果
为数列
的一个
项子列,且
为等差数列,证明:
的公差
满足
;
(3)如果
为数列
的一个
项子列,且
为等比数列,证明:
.














(1)试写出数列


(2)如果







(3)如果






已知等差数列
的前
项和为
,并且
,
,数列
满足:
,
,记数列
的前
项和为
.
(1)求数列
的通项公式
及前
项和公式
;
(2)求数列
的通项公式
及前
项和公式
;
(3)记集合
,若
的子集个数为16,求实数
的取值范围.











(1)求数列




(2)求数列




(3)记集合



等差数列
首项和公差都是
,记
的前n项和为
,等比数列
各项均为正数,公比为q,记
的前n项和为
:
(1)写出
构成的集合A;
(2)若将
中的整数项按从小到大的顺序构成数列
,求
的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得
同时为(1)中集合A的元素?若存在,写出所有符合条件的
的通项公式,若不存在,请说明理由.







(1)写出


(2)若将



(3)若q为正整数,问是否存在大于1的正整数k,使得


